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1 Introduction

Let R be a commutative ring with nonzero identity. Recall that R is von Neumann
regular if for every a ∈ R, there is x ∈ R such that a2x = a, that R is π-regular if
for every a ∈ R, there are x ∈ R and an integer n ≥ 1 such that a2nx = an, and
that R is Boolean if a2 = a for every a ∈ R. Thus a Boolean ring is von Neumann
regular and a von Neumann regular ring is π-regular. Moreover, R is π-regular
(resp., von Neumann regular) if and only if R is zero-dimensional (resp., reduced
and zero-dimensional) [19, Theorem 3.1, page 10]; so R is π-regular if and only if
R/nil(R) is von Neumann regular. Specializing to elements, we define a ∈ R to be a
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von Neumann regular element of R if a2x = a for some x ∈ R. Similarly, we define
a ∈ R to be a π-regular element of R if a2nx = an for some x ∈ R and n ≥ 1. Let
Idem(R) = {a ∈ R | a2 = a}, vnr(R) = {a ∈ R | a is von Neumann regular}, and
π-r(R) = {a ∈ R | a is π-regular}. Thus Idem(R) ⊆ vnr(R) ⊆ π-r(R) and R is a
Boolean (resp., von Neumann regular, π-regular) ring if and only if Idem(R) = R
(resp., vnr(R) = R, π-r(R) = R).

Following [11], we define R to be a von Neumann local ring if either a ∈ vnr(R)
or 1− a ∈ vnr(R) for every a ∈ R. As in [27], we say that R is a clean ring if every
element of R is the sum of a unit and an idempotent of R. Specializing to elements
again, we define a ∈ R to be a von Neumann local element of R if either a ∈ vnr(R)
or 1 − a ∈ vnr(R), and we define a ∈ R to be a clean element of R if a is the sum
of a unit and an idempotent of R. Let vnl(R) = {a ∈ R | a is von Neumann local}
and cln(R) = {a ∈ R | a is clean}. Thus R is a von Neumann local (resp., clean)
ring if and only if vnl(R) = R (resp., cln(R) = R).

We have Idem(R) ⊆ vnr(R) ⊆ π-r(R) ⊆ cln(R) and vnr(R) ⊆ vnl(R) ⊆ cln(R)
for any commutative ring R. Moreover, all inclusions may be strict and π-r(R) and
vnl(R) need not be comparable (this happens if R = Z × Z4 × Z4). However, if R
is an integral domain, then R is von Neumann regular if and only if R is π-regular,
if and only if R is a field; and R is von Neumann local if and only if R is clean,
if and only if R is quasilocal. More generally, vnr(R) = π-r(R) = U(R) ∪ {0} and
vnl(R) = cln(R) = {0, 1}+U(R) when R is an integral domain. Thus these notions
are more interesting for rings with nonzero zero-divisors.

In Section 2, we collect elementary results about von Neumann regular elements
that will be used throughout this paper. Most of these results are well known in the
von Neumann regular ring context. We show that every element of R is either von
Neumann regular or nilpotent if and only if R is zero-dimensional and either reduced
or quasilocal, and that a non-domain R is von Neumann regular (resp., Boolean) if
and only if its zero-divisors are all von Neumann regular (resp., idempotent). We
also give necessary and sufficient conditions for vnr(R) to be a subring of R when
2 ∈ U(R). In Section 3, we investigate vnr(T ) for several ring extensions R ⊆ T .
In particular, we consider vnr(R[X]), vnr(R[[X]]), vnr(R(+)M), and vnr(R ./ I).

In Section 4, we study π-regular elements. We give several results for π-regular
elements analogous to those for von Neumann regular elements. In particular, we
show that π-r(R) = vnr(R) + nil(R), that π-r(R) = vnr(R) ∪ nil(R) if and only if
either vnr(R) = U(R)∪{0} or nil(R) = {0}, and that a ring R with nil(R) ( Z(R)
is π-regular if and only if its zero-divisors are all π-regular elements of R. We also
investigate π-r(T ) for several ring extensions R ⊆ T .

In Section 5, we study von Neumann local elements, and in Section 6, we con-
sider clean elements. We give several results for von Neumann local elements and
clean elements analogous to those for von Neumann regular elements and π-regular
elements. However, unlike Idem(R), vnr(R), and π-r(R), the sets vnl(R) and cln(R)
need not be multiplicatively closed. We also investigate vnl(T ) and cln(T ) for sev-
eral ring extensions R ⊆ T .

In Section 7, we investigate the induced subgraphs Γ(Idem(R)), Γ(vnr(R)),
Γ(π-r(R)), Γ(vnl(R)), and Γ(cln(R)) of the zero-divisor graph Γ(R) of R deter-
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mined by the idempotent, von Neumann regular, π-regular, von Neumann local,
and clean elements of Z(R), respectively. In particular, we show that Γ(Idem(R)),
Γ(vnr(R)), and Γ(π-r(R)) are each connected with diameter at most three, that each
has girth at most four if it contains a cycle, and that Γ(Idem(R)) and Γ(vnr(R)) are
uniquely complemented. However, Γ(vnl(R)) and Γ(cln(R)) need not be connected,
and Γ(π-r(R)), Γ(vnl(R)), and Γ(cln(R)) need not be uniquely complemented.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set
of zero-divisors, U(R) its group of units, nil(R) its ideal of nilpotent elements,
J(R) its Jacobson radical, and T (R) its total quotient ring. For A ⊆ R, let A∗ =
A\{0}. Recall that R is reduced if nil(R) = {0}. The Krull dimension of R will
be denoted by dim(R), and the characteristic of R will be denoted by char(R). For
a homomorphism f : R → S of commutative rings, we assume that f(1) = 1. As
usual, Z, Q, and Zn will denote the integers, rational numbers, and integers modulo
n, respectively. For any undefined notation or terminology, see [17], [19] or [25].

2 Von Neumann Regular elements

Theorem 2.1. Let R and S be commutative rings, and let {Rα} be a family of
commutative rings.

(1) Let a ∈ R. If a2x = a for x ∈ R, then ax ∈ Idem(R).
(2) [1, Proposition 3.10] vnr(R) is multiplicatively closed.

(3) vnr(R) ∩ nil(R) = {0}.
(4) U(R) ∪ Idem(R) ⊆ vnr(R) ⊆ U(R) ∪ Z(R).
(5) vnr(R) = U(R)∪{0} if and only if Idem(R) = {0, 1}. In particular, vnr(R) =

U(R) ∪ {0} if R is either an integral domain or quasilocal.

(6) vnr(R) contains a nonzero nonunit if and only if {0, 1} ( Idem(R).
(7) vnr

(∏
Rα

)
=

∏
vnr(Rα). In particular,

∏
Rα is von Neumann regular if and

only if each Rα is von Neumann regular.

(8) Let f : R → S be a homomorphism of commutative rings. Then f(vnr(R)) ⊆
vnr(S). In particular, vnr(R) ⊆ vnr(S) when R is a subring of S, and any
homomorphic image of a von Neumann regular ring is von Neumann regular.

It is well known that if R is a von Neumann regular ring, then for every a ∈ R,
there is x ∈ U(R) such that a2x = a. Moreover, a = ue for some u ∈ U(R) and
e ∈ Idem(R). We next show that these two results, plus several others, hold in
general for elements of vnr(R) (cf. [19, Corollary 3.3, page 11] and [7, Section 2]).

Theorem 2.2. Let R be a commutative ring. Then the following statements are
equivalent for a ∈ R:

(1) a ∈ vnr(R).
(2) a2u = a for some u ∈ U(R).
(3) a = ue for some u ∈ U(R) and e ∈ Idem(R).
(4) ab = 0 for some b ∈ vnr(R)\{a} with a + b ∈ U(R).
(5) ab = 0 for some b ∈ R with a + b ∈ U(R).
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Proof. (1)⇒(2) Suppose that a2x = a for x ∈ R. Then e = ax ∈ Idem(R) by
Theorem 2.1(1); so 1− e ∈ Idem(R) and a(1− e) = 0. Thus u = ex + 1− e ∈ U(R)
since u(a + 1− e) = 1, and a2u = a2(ex + 1− e) = a2ex + a2(1− e) = a.

(2)⇒(3) Suppose that a2v = a for some v ∈ U(R). Let e = av ∈ Idem(R) and
u = v−1 ∈ U(R). Then ue = v−1(av) = a.

(3)⇒(4) Suppose that a = ue for u ∈ U(R) and e ∈ Idem(R). Let b = u(1− e);
so b 6= a. Note that b2u−1 = u2(1 − e)2u−1 = u(1 − e) = b; so b ∈ vnr(R). Then
ab = (ue)(u(1− e)) = 0 and a + b = ue + u(1− e) = u ∈ U(R).

(4)⇒(5) This is clear.
(5)⇒(1) Suppose that ab = 0 and a + b = u ∈ U(R) for some b ∈ R. Then

au = a(a + b) = a2 + ab = a2. Thus a2u−1 = (au)u−1 = a; so a ∈ vnr(R). ¤

Let a ∈ vnr(R). Then a2x = a for some x ∈ R. Note that x need not be unique
since we may replace x by any y ∈ x + ann(a2).

Theorem 2.3. [28, Lemma 4] Let R be a commutative ring and a ∈ vnr(R). Then
there is a unique x ∈ R with a2x = a and x2a = x.

Since vnr(R) ∩ nil(R) = {0}, it is natural to ask when R = vnr(R) ∪ nil(R),
i.e., when is every non-nilpotent element of R von Neumann regular? We next
show that this happens only in the two extreme cases: either nil(R) = {0} and
vnr(R) = R, in which case R is von Neumann regular; or nil(R) = R\U(R) and
vnr(R) = U(R) ∪ {0}, in which case R is quasilocal with maximal ideal nil(R)
(i.e., R is a zero-dimensional quasilocal ring). Equivalently, R = vnr(R) ∪ nil(R) if
and only if dim(R) = 0 and R is either reduced or quasilocal. We also show that
R = vnr(R) ∪ Z(R) if and only if R is a total quotient ring.

Theorem 2.4. Let R be a commutative ring.
(1) R = vnr(R) ∪ nil(R) if and only if either R is von Neumann regular or R is

quasilocal with maximal ideal nil(R). In particular, if R = vnr(R) ∪ nil(R),
then R is a π-regular ring, a von Neumann local ring, and a clean ring.

(2) R = vnr(R) ∪ Z(R) if and only if T (R) = R.

Proof. (1) Suppose that R = vnr(R)∪ nil(R). If vnr(R) = U(R)∪ {0}, then nil(R)
is the set of nonunits of R. So in this case, nil(R) is the unique maximal ideal of R.
Thus we may assume that vnr(R) contains a nonzero nonunit, and hence there is
e ∈ Idem(R)\{0, 1} by Theorem 2.1(6). We show that nil(R) = {0}. Let x ∈ nil(R).
Then necessarily e+x ∈ vnr(R), and thus x−ex = (1−e)x = (1−e)(e+x) ∈ vnr(R)
by Theorem 2.1(2). Also, x−ex = (1−e)x ∈ nil(R); so x−ex = 0 by Theorem 2.1(3).
By replacing e with 1− e, a similar argument yields ex = 0, and thus x = 0. Hence
R = vnr(R) ∪ nil(R) = vnr(R); so R is von Neumann regular.

For the converse, assume that R is either von Neumann regular or quasilocal
with maximal ideal nil(R). If R is von Neumann regular, then vnr(R) = R; so
R = vnr(R) ∪ nil(R). If R is quasilocal with maximal ideal nil(R), then vnr(R) =
U(R) ∪ {0} = (R\nil(R)) ∪ {0} by Theorem 2.1(5); so again R = vnr(R) ∪ nil(R).

For the “in particular” statement, suppose that R = vnr(R) ∪ nil(R). Clearly
vnr(R) ∪ nil(R) ⊆ π-r(R) (cf. Theorem 4.1(4)); so R is a π-regular ring when
R = vnr(R) ∪ nil(R). Note that if a ∈ nil(R), then 1 − a ∈ U(R) ⊆ vnr(R) (cf.
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Theorem 5.1(3)). Thus R is a von Neumann local ring when R = vnr(R) ∪ nil(R).
By Theorem 6.1(1)(2), a von Neumann local ring (or a π-regular ring) is also a
clean ring.

(2) Note that R = vnr(R)∪Z(R) if and only if R = U(R)∪Z(R) since U(R) ⊆
vnr(R) ⊆ U(R)∪Z(R) by Theorem 2.1(4). Thus R = vnr(R)∪Z(R) if and only if
T (R) = R. ¤

If Z(R) ⊆ vnr(R), then vnr(R) = U(R) ∪ Z(R) by Theorem 2.1(4). So if Z(R)
= {0}, then R is an integral domain and vnr(R) = U(R)∪ {0}. We next show that
if {0} ( Z(R) ⊆ vnr(R), then R is von Neumann regular. One consequence of the
next result is that to check if a non-domain R is von Neumann regular, we only
need to show that each zero-divisor of R is von Neumann regular. Easy examples
show that in Theorems 2.5 and 2.7 it is necessary to assume that {0} ( Z(R).

Theorem 2.5. Let R be a commutative ring with {0} ( Z(R). Then Z(R) ⊆
vnr(R) if and only if R is von Neumann regular.

Proof. Suppose that {0} ( Z(R) ⊆ vnr(R). Thus vnr(R) contains a nonzero
nonunit; so there is e ∈ Idem(R)\{0, 1} by Theorem 2.1(6). Let x ∈ R\Z(R). Then
ex ∈ Z(R) ⊆ vnr(R); so (ex)2s = ex for some s ∈ R. Thus exs = e since e is
idempotent and x is not a zero-divisor. Similarly, (1− e)xt = 1− e for some t ∈ R.
Hence (es + (1− e)t)x = exs + (1− e)xt = e + (1− e) = 1; so x ∈ U(R) ⊆ vnr(R).
Thus R = vnr(R), and hence R is von Neumann regular. The converse is clear. ¤

A Boolean ring is von Neumann regular; in fact, a von Neumann regular ring
R is a Boolean ring if and only if U(R) = {1} by Theorem 2.2. Clearly Idem(R)
is multiplicatively closed, Idem(R) ∩ nil(R) = {0}, Idem

(∏
Rα

)
=

∏
Idem(Rα),

and f(Idem(R)) ⊆ Idem(S) for a homomorphism f : R → S of commutative rings.
It is easily shown that Idem(R) is a subring of R if and only if char(R) = 2 (and
in this case, Idem(R) is a Boolean ring). The next two results are the analogs for
idempotent elements of the two previous theorems (D.D. Anderson has shown us
another proof of Theorem 2.7). The related result that R = U(R)∪ Idem(R) if and
only if R is a Boolean ring or a field is given in [4, Theorem 1.14].

Theorem 2.6. Let R be a commutative ring. Then R = Idem(R) ∪ nil(R) if and
only if R is Boolean.

Proof. Suppose that R = Idem(R) ∪ nil(R). Then U(R) = {1} since U(R) ⊆
Idem(R); so we must have nil(R) = {0} since U(R) + nil(R) = U(R). Thus R =
Idem(R), and hence R is Boolean. The converse is clear. ¤

Theorem 2.7. Let R be a commutative ring with {0} ( Z(R). Then Z(R) ⊆
Idem(R) if and only if R is Boolean.

Proof. Suppose that {0} ( Z(R) ⊆ Idem(R); let s ∈ Z(R)∗. Since s ∈ Z(R)∗ ⊆
Idem(R), we have s, 1− s ∈ Idem(R), and hence 1− s ∈ Z(R)∗. Let x ∈ R\Z(R).
Then sx, (1 − s)x ∈ Z(R)∗ ⊆ Idem(R); so (sx)2 = sx. Thus sx = s since s
is idempotent and x is not a zero-divisor. Similarly, (1 − s)x = 1 − s. Hence
x = sx+(1−s)x = s+(1−s) = 1; so x ∈ Idem(R). Thus R = Idem(R), and hence
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R is Boolean. The converse is clear. ¤

It seems natural to conjecture that R = Idem(R) ∪ Z(R) if and only if R is a
Boolean ring. We next give some evidence to support this conjecture.

Theorem 2.8. Let R be a commutative ring.

(1) If R = Idem(R) ∪ Z(R), then U(R) = {1}, char(R) = 2, nil(R) = {0},
J(R) = {0}, and T (R) = R.

(2) If either dim(R) = 0 or R has only a finite number of maximal ideals, then
R = Idem(R) ∪ Z(R) if and only if R is Boolean.

Proof. (1) Suppose that R = Idem(R)∪Z(R). Then U(R) ⊆ Idem(R); so U(R) =
{1}. Since U(R) = {1}, we have −1 = 1; so char(R) = 2. Since U(R) + nil(R) =
U(R) and U(R) = {1}, necessarily nil(R) = {0}. Similarly, U(R) + J(R) = U(R)
yields J(R) = {0}. Finally, T (R) = R since R = U(R) ∪ Z(R).

(2) Suppose that dim(R) = 0 and R = Idem(R) ∪ Z(R). Then R is reduced by
(1), and thus R is von Neumann regular by [19, Theorem 3.1, page 10]. Hence R
is a von Neumann regular ring with U(R) = {1} by (1); so R is a Boolean ring by
Theorem 2.2. The converse is clear.

If R has only a finite number of maximal ideals and R = Idem(R)∪Z(R), then R
is isomorphic to a finite direct product of fields by the Chinese Remainder Theorem
since J(R) = {0} by (1). Thus R is a von Neumann regular ring, and hence a
Boolean ring since U(R) = {1} by (1). The converse is clear. ¤

By Theorem 2.1(2)(4), vnr(R) is a multiplicatively closed subset of R with
Idem(R) ∪ U(R) ⊆ vnr(R) ⊆ U(R) ∪ Z(R). One can ask when vnr(R) is closed
under addition, i.e., when is vnr(R) a subring of R? In Theorem 2.11, we answer
this question when 2 ∈ U(R). We first show that vnr(R) a subring of R forces R to
be reduced.

Theorem 2.9. Let R be a commutative ring. If vnr(R) is a subring of R, then R
is reduced.

Proof. Let x ∈ nil(R). Then 1 + x ∈ U(R) ⊆ vnr(R), and thus x = −1 + (1 + x) ∈
vnr(R) since vnr(R) is closed under addition. Hence x ∈ nil(R) ∩ vnr(R) = {0} by
Theorem 2.1(3); so R is reduced. ¤

It is well known that if R is a commutative von Neumann regular ring with
2 ∈ U(R), then every element of R is the sum of two units of R. In [15], it is shown
that if aua = a for some u ∈ U(R), then a is the sum of two units of R. So this
result extends to vnr(R).

Theorem 2.10. [15] Let R be a commutative ring with 2 ∈ U(R). Then every
a ∈ vnr(R) is the sum of two units of R.

Proof. Let a ∈ vnr(R). Then a = ue for some u ∈ UR) and e ∈ Idem(R) by
Theorem 2.2. Note that (2e − 1)2 = 4e2 − 4e + 1 = 1; so v = 2e − 1 ∈ U(R) with
v2 = 1. Thus e = 2−1v + 2−1; so a = ue = u(2−1v + 2−1) = 2−1uv + 2−1u is the
sum of two units of R. ¤
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Theorem 2.11. Let R be a commutative ring with 2 ∈ U(R). Then the following
statements are equivalent:

(1) vnr(R) is a subring of R.

(2) The sum of any four units of R is a von Neumann regular element of R.

(3) Let u, v, k, m ∈ U(R) with k2 = m2 = 1. Then u(1 + k) + v(1 + m) ∈ vnr(R).

Proof. (1)⇒(2) This is clear since U(R) ⊆ vnr(R) by Theorem 2.1(4).
(2)⇒(3) Let u, v ∈ U(R) and k, m ∈ U(R) with k2 = m2 = 1. Then we have

u(1 + k) + v(1 + m) = u + uk + v + vm is the sum of four units of R, and thus
u(1 + k) + v(1 + m) ∈ vnr(R) by hypothesis.

(3)⇒(1) By Theorem 2.1(2)(4), we only need to show that x, y ∈ vnr(R) implies
that x + y ∈ vnr(R). Let x, y ∈ vnr(R). Then x = ue and y = vf for some
u, v ∈ U(R) and e, f ∈ Idem(R) by Theorem 2.2. By the proof of Theorem 2.10,
there are k, m ∈ U(R) with k2 = m2 = 1 such that 2e = k + 1 and 2f = m + 1.
Thus 2(x + y) = 2ue + 2vf = u(1 + k) + v(1 + m) ∈ vnr(R). Since 2 ∈ U(R), we
have x + y ∈ vnr(R) by Theorem 2.1(4). ¤

Remark 2.12. Let R be a commutative ring and S(R) = {x ∈ R |x2 = 1} ⊆ U(R).
The proof of Theorem 2.10 shows that there is a map ϕ : Idem(R) → S(R) given
by ϕ(e) = 2e− 1. Note that ϕ is injective if 2 6∈ Z(R) and ϕ is surjective, and thus
bijective if 2 ∈ U(R).

3 Ring Extensions

In this section, we determine vnr(T ) for several ring extensions T of R. We first
determine vnr(R[X]) and vnr(R[[X]]). We have vnr(R) ( vnr(R[X]) when U(R) (
U(R[X]) (i.e., when R is not reduced), and we always have vnr(R[X]) ( vnr(R[[X]])
since U(R[X]) ( U(R[[X]]).

Lemma 3.1. Let R be a commutative ring.

(1) U(R[X]) =
{∑

anXn ∈ R[X] | a0 ∈ U(R), an ∈ nil(R) for every n ≥ 1
}
.

(2) U(R[[X]]) =
{∑

anXn ∈ R[[X]] | a0 ∈ U(R)
}
.

(3) Idem(R[[X]]) = Idem(R[X]) = Idem(R).

Proof. (1) and (2) are well known.
(3) Clearly Idem(R) ⊆ Idem(R[X]) ⊆ Idem(R[[X]]). Thus we only need to show

that each f(X) =
∑

anXn ∈ Idem(R[[X]]) is actually in Idem(R). By comparing
coefficients in f(X)2 = f(X), we have a2

0 = a0; so a0 ∈ Idem(R). For n = 1,
we have 2a0a1 = a1. Multiplying both sides by a0 and using a2

0 = a0, we obtain
2a0a1 = a0a1. Thus a0a1 = 0, and hence a1 = 2a0a1 = 0. In a similar manner,
one can easily show that a2

0 = a0 and a1 = · · · = an = 0 implies an+1 = 0 for every
n ≥ 1. Thus f(X) = a0 ∈ Idem(R). ¤

Theorem 3.2. Let R be a commutative ring.

(1) [2, Theorem 4.4] vnr(R[X]) =
{∑

anXn ∈ R[X] | a0 = ue, an ∈ e(nil(R)) for

every n ≥ 1 for some u ∈ U(R) and e ∈ Idem(R)
}
.

(2) [2, Theorem 4.5] vnr(R[[X]]) =
{∑

anXn ∈ R[[X]] | a0 = ue, an ∈ eR for

every n ≥ 1 for some u ∈ U(R) and e ∈ Idem(R)
}
.
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(3) R[X] and R[[X]] are never von Neumann regular rings. In particular, R[X]
and R[[X]] are never Boolean rings.

Proof. (1) and (2) follow directly from Theorem 2.2 and Lemma 3.1.
(3) This follows since X is not a von Neumann regular element in either ring. An

alternate proof would be to note that R[X] and R[[X]] each have Krull dimension
at least one. The “in particular” statement is clear. ¤

Corollary 3.3. Let R be a reduced commutative ring. Then vnr(R) = vnr(R[X])
( vnr(R[[X]]).

In view of the preceding theorem, it is natural to ask if vnr(R[X]) =
{∑

anXn ∈
R[X] | a0 ∈ vnr(R), an ∈ nil(R) for every n ≥ 1

}
. The next example shows that

this is not the case.

Example 3.4. Let R = Z2×Z4 and f(X) = (1, 0)+(0, 2)X ∈ R[X]. Then a0 = (1, 0)
∈ vnr(R), a1 = (0, 2) ∈ nil(R), and it is easy to check that there are no e ∈ Idem(R)
and u ∈ U(R[X]) such that f(X) = ue. Thus f(X) 6∈ vnr(R[X]).

Does the converse of the “in particular” statement in Theorem 2.1(5) hold, i.e.,
does vnr(R) = U(R)∪ {0} imply that R is either an integral domain or quasilocal?
We next show that the converse does not hold.

Example 3.5. Let R be a reduced quasilocal commutative ring which is not an
integral domain. For example, let R = K[X, Y ](X,Y )/(XY )(X,Y ), where K is a
field. Thus vnr(R) = U(R) ∪ {0} by Theorem 2.1(5). Then R[X] is reduced, and
hence U(R[X]) = U(R) by Lemma 3.1(1). Moreover, R[X] is neither quasilocal
nor an integral domain. By Corollary 3.3, vnr(R[X]) = vnr(R) = U(R) ∪ {0} =
U(R[X]) ∪ {0}.

We next determine the von Neumann regular elements in an idealization. Given
a commutative ring R and an R-module M , the idealization of M is the ring
R(+)M = R × M with addition defined by (r,m) + (s, n) = (r + s,m + n) and
multiplication defined by (r,m)(s, n) = (rs, rn+sm) for all r, s ∈ R and m,n ∈ M .
Note that {0}(+)M ⊆ nil(R(+)M) since ({0}(+)M)2 = {(0, 0)}. The following
lemma records some useful facts about R(+)M . For other results about the ring
R(+)M , see [5] and [19]. Note that R(+)M is a Boolean ring if and only if R is a
Boolean ring and M = {0} by Lemma 3.6(4).

Lemma 3.6. Let R be a commutative ring and M an R-module.
(1) U(R(+)M) = U(R)(+)M .
(2) nil(R(+)M) = nil(R)(+)M .
(3) Z(R(+)M) = {(r,m) | r ∈ Z(R) ∪ Z(M), m ∈ M}.
(4) Idem(R(+)M) = Idem(R)(+){0}.
(5) R(+)M/{0}(+)M ∼= R as rings.

Proof. The proofs of (1), (2) and (3) may be found in [19, Theorem 25.1(6), page
162], [19, Theorem 25.1(5)] and [19, Theorem 25.3], respectively. (4) is from [5,
Theorem 3.7], and (5) is from [5, Theorem 3.1]. ¤

Theorem 3.7. Let R be a commutative ring and M an R-module.
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(1) vnr(R(+)M) = {(r, rm) | r ∈ vnr(R), m ∈ M}.
(2) R(+)M is von Neumann regular if and only if R is von Neumann regular and

M = {0}.
Proof. (1) Let (r, n) ∈ vnr(R(+)M). Then (r, n)2(s, b) = (r, n) for some (s, b) ∈
R(+)M . Thus (r, n) = (r2, 2rn)(s, b) = (r2s, r2b + 2rsn); so r = r2s and n =
r2b + rsn. Hence rsn = r3sb + (rs)2n = r2b + rsn. Thus r2b = 0, and hence
rsn = n. Thus (r, n) = (r, rm) with r ∈ vnr(R) and m = sn ∈ M .

For the reverse inclusion, suppose that r2s = r for some s ∈ R, and let (r, rm) ∈
R(+)M . Then (r, rm)2(s,−sm) = (r2, 2r2m)(s,−sm) = (r2s,−r2sm + 2r2sm) =
(r,−rm + 2rm) = (r, rm); so (r, rm) ∈ vnr(R(+)M).

(2) This follows directly from (1). ¤

Corollary 3.8. Let R be a von Neumann regular commutative ring and M an
R-module. Then vnr(R(+)M) = {(r, rm) | r ∈ R, m ∈ M}.
Corollary 3.9. Let R be either an integral domain or a quasilocal commutative
ring, and let M be an R-module. Then vnr(R(+)M) = U(R)(+)M ∪ {(0, 0)}
(= U(R(+)M) ∪ {(0, 0)}).
Corollary 3.10. Let R be a commutative ring and M a nonzero R-module. Then
R(+)M = vnr(R(+)M) ∪ nil(R(+)M) if and only if R is quasilocal with maximal
ideal nil(R).

Proof. This follows directly from Theorems 3.7 and 2.4. ¤

Corollary 3.11. Let R be a reduced commutative ring and M a nonzero R-
module. Then vnr(R(+)M) = vnr(R)∗(+)M ∪ {(0, 0)} if and only if R is a field.
In particular, R(+)M = vnr(R(+)M) ∪ nil(R(+)M) when R is a field.

Let I be an ideal of a commutative ring R. As in [12], the amalgamated du-
plication of the ring R along the ideal I is defined to be the subring R ./ I =
{(r, r + i) | r ∈ R, i ∈ I} of R×R. For other results about the ring R ./ I, see [12]
or [13].

Theorem 3.12. Let R be a commutative ring and I an ideal of R. Then R ./ I
is a von Neumann regular (resp., Boolean) ring if and only if R is a von Neumann
regular (resp., Boolean) ring.

Proof. By [12, Theorem 3.5], R ./ I is reduced if and only if R is reduced, and
dim(R ./ I) = dim(R) by [12, Corollary 3.3]. Thus R ./ I is von Neumann regular
if and only if R is von Neumann regular. The “Boolean ring” statement is clear
since Idem(R ./ I) = (R ./ I) ∩ (Idem(R)× Idem(R)). ¤

4 π-Regular Elements

Recall that a commutative ring R is π-regular if and only if π-r(R) = R, if and only
if dim(R) = 0 [19, Theorem 3.1, page 10]. The first two theorems of this section are
the analogs of Theorems 2.1 and 2.2 for π-regular elements. Example 3.5 shows that
the converse of the “in particular” statement in Theorem 4.1(5) does not hold. Easy
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examples show that Theorem 4.1(7) does not extend to arbitrary direct products
of commutative rings (cf. Theorem 2.1(7)). The proofs of the following results are
routine and are thus left to the reader.

Theorem 4.1. Let R, R1, . . . , Rn and S be commutative rings.
(1) vnr(R) ⊆ π-r(R). In particular, a von Neumann regular ring is a π-regular

ring.
(2) Let a ∈ R. If a2nx = an for some x ∈ R and n ≥ 1, then anx ∈ Idem(R).
(3) π-r(R) is multiplicatively closed.
(4) vnr(R) ∪ nil(R) ⊆ π-r(R) ⊆ U(R) ∪ Z(R).
(5) π-r(R) = U(R)∪nil(R) if and only if Idem(R) = {0, 1}. In particular, π-r(R)

= U(R) ∪ nil(R) if R is either an integral domain or quasilocal.
(6) π-r(R) contains a non-nilpotent nonunit if and only if {0, 1} ( Idem(R).
(7) π-r(R1 × · · · ×Rn) = π-r(R1)× · · · × π-r(Rn). In particular, R1 × · · · ×Rn is

π-regular if and only if each Ri is π-regular.
(8) Let f : R → S be a homomorphism of commutative rings. Then f(π-r(R)) ⊆

π-r(S). In particular, π-r(R) ⊆ π-r(S) when R is a subring of S, and any
homomorphic image of a π-regular ring is π-regular.

Theorem 4.2. Let R be a commutative ring. Then the following statements are
equivalent for a ∈ R:

(1) a ∈ π-r(R).
(2) an ∈ vnr(R) for some n ≥ 1.
(3) an = ue for some u ∈ U(R), e ∈ Idem(R), and n ≥ 1.
(4) a = b + w for some b ∈ vnr(R) and w ∈ nil(R).
(5) a = ue + w for some u ∈ U(R), e ∈ Idem(R), and w ∈ nil(R).
(6) a + nil(R) ∈ vnr(R/nil(R)).
(7) anb = 0 for some b ∈ R and n ≥ 1 with an + b ∈ U(R).
(8) ab ∈ nil(R) for some b ∈ R with a + b ∈ U(R).

Proof. (1)⇔(2) This is clear.
(2)⇔(3) and (4)⇔(5) follow from Theorem 2.2.
(1)⇒(5) See [20, Theorem 13].
(4)⇒(6) This follows directly from Theorem 2.1(8).
(6)⇒(3) Since a + nil(R) ∈ vnr(R/nil(R)), we have a + nil(R) = uf + nil(R)

for some u ∈ U(R) and f + nil(R) ∈ Idem(R/nil(R)) by Theorem 2.2. Since
f + nil(R) ∈ Idem(R/nil(R)), we have e = f + h ∈ Idem(R) for some h ∈ nil(R)
by [25, Corollary, page 73]. Thus a = ue + w for some e ∈ Idem(R), u ∈ U(R),
and w ∈ nil(R). Since e is idempotent and wn = 0 for some n ≥ 1, we have an =
(ue + w)n = une + nun−1ew + · · · + nuewn−1 = (un + nun−1w + · · · + nuwn−1)e.
Hence v = un +nun−1w+ · · ·+nuwn−1 ∈ U(R)+nil(R) ⊆ U(R), and thus an = ve
with v ∈ U(R) and e ∈ Idem(R).

(3)⇒(7) Suppose that an = ue for some u ∈ U(R), e ∈ Idem(R), and n ≥ 1. Let
b = u(1−e). Then anb = (ue)(u(1−e)) = 0 and an +b = ue+u(1−e) = u ∈ U(R).

(7)⇒(1) Suppose that anb = 0 for some b ∈ R and n ≥ 1 with an+b = u ∈ U(R).
Then anu = an(an + b) = a2n + anb = a2n. Thus a2nu−1 = (anu)u−1 = an; so
a ∈ π-r(R).
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(5)⇒(8) Let a = ue + w for u ∈ U(R), e ∈ Idem(R), and w ∈ nil(R), and let
b = u(1 − e). Then ab = u(1 − e)w ∈ nil(R) and a + b = (ue + w) + u(1 − e) =
(ue + u(1− e)) + w = u + w ∈ U(R) + nil(R) ⊆ U(R).

(8)⇒(7) Suppose that ac ∈ nil(R) for some c ∈ R with a + c ∈ U(R). Then
(ac)n = 0 for some n ≥ 1 and an +cn = (a+c)n +d(ac) ∈ U(R)+nil(R) ⊆ U(R) for
some d ∈ R. Let b = cn. Then anb = ancn = (ac)n = 0 and so an + b = an + cn ∈
U(R). ¤

Corollary 4.3. Let R be a commutative ring.

(1) π-r(R) = vnr(R) + nil(R).
(2) π-r(R)/nil(R) = vnr(R/nil(R)).
(3) π-r(R) = vnr(R) if and only if R is reduced.

(4) [16, Theorem 3] If 2 ∈ U(R), then every a ∈ π-r(R) is the sum of two units
of R.

Proof. (1) This follows from the equivalence of (1) and (4) in Theorem 4.2.
(2) This follows from the equivalence of (1) and (6) in Theorem 4.2.
(3) This follows from (1) since vnr(R) ∩ nil(R) = {0} by Theorem 2.1(3).
(4) By (1), a = x + w with x ∈ vnr(R) and w ∈ nil(R), and x = u + v with

u, v ∈ U(R) by Theorem 2.10. Thus a = u + (v + w) with u, v + w ∈ U(R). ¤

By Theorem 4.1(4) and Corollary 4.3(1), we have vnr(R) ∪ nil(R) ⊆ π-r(R) =
vnr(R) + nil(R). So it is natural to ask when π-r(R) = vnr(R) ∪ nil(R). The next
theorem, which is the π-regular analog of Theorem 2.4, shows that this happens only
in the two extreme cases: either vnr(R) = U(R) ∪ {0} (equivalently, Idem(R) =
{0, 1} by Theorem 2.1(5)) or nil(R) = {0}.
Theorem 4.4. Let R be a commutative ring.

(1) π-r(R) = vnr(R) ∪ nil(R) if and only if either Idem(R) = {0, 1} or nil(R)
= {0}.

(2) R = π-r(R) ∪ Z(R) if and only if T (R) = R.

Proof. (1) Suppose that π-r(R) = vnr(R)∪nil(R) and there is e ∈ Idem(R)\{0, 1}.
We show that nil(R) = {0}. Let x ∈ nil(R). Then e+x ∈ vnr(R)+nil(R) = π-r(R)
= vnr(R) ∪ nil(R) by Corollary 4.3(1) and hypothesis, and thus necessarily e + x
∈ vnr(R). Hence x− ex = (1 − e)x = (1 − e)(e + x) ∈ vnr(R) by Theorem 2.1(2).
Also, x− ex = (1− e)x ∈ nil(R); so x− ex = 0 by Theorem 2.1(3). By replacing e
with 1− e, a similar argument yields ex = 0, and thus x = 0. Hence nil(R) = {0}.

Conversely, suppose that either Idem(R) = {0, 1} or nil(R) = {0}. Since π-r(R)
= vnr(R) + nil(R) by Corollary 4.3(1) and U(R) + nil(R) = U(R), either condition
gives π-r(R) = vnr(R) ∪ nil(R).

(2) Note that R = π-r(R) ∪ Z(R) if and only if R = U(R) ∪ Z(R) since U(R)
⊆ π-r(R) ⊆ U(R)∪Z(R) by Theorem 4.1(4). Thus R = π-r(R)∪Z(R) if and only
if T (R) = R. ¤

If Z(R) ⊆ π-r(R), then π-r(R) = U(R) ∪ Z(R) by Theorem 4.1(4). The next
result is the π-regular analog of Theorem 2.5; it says that to determine if a ring
R with nil(R) ( Z(R) is π-regular, we only need to check that the zero-divisors
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of R are all π-regular. Note that it is necessary to assume that nil(R) ( Z(R)
in Theorem 4.5 since R = Z(+)Z satisfies {0} 6= nil(R) = {0}(+)Z = Z(R) ⊆
π-r(R) = {0,−1, 1}(+)Z by Lemma 3.6(2)(3) and Theorem 4.7(1), but R is not
π-regular.

Theorem 4.5. Let R be a commutative ring with nil(R) ( Z(R). Then Z(R) ⊆
π-r(R) if and only if R is π-regular.

Proof. If Z(R) ⊆ π-r(R), since nil(R) ( Z(R) ⊆ π-r(R), there is e ∈ Idem(R)\{0, 1}
by Theorem 4.1(6). Since vnr(R/nil(R)) = {a+nil(R) | a ∈ π-r(R)} by Theorem 4.2
and e + nil(R) ∈ vnr(R/nil(R)), we have ∅ 6= Z(R/nil(R))∗ ⊆ vnr(R/nil(R)). Thus
R/nil(R) is a von Neumann regular ring by Theorem 2.5. Hence R is a π-regular
ring by Theorem 4.2 (also see [19, Theorem 3.1, page 10]). The converse is clear. ¤

Theorem 4.6. Let R be a commutative ring and M an R-module.
(1) π-r(R[X]) =

{∑
anXn ∈ R[X] | a0 ∈ π-r(R), an ∈ nil(R) for every n ≥ 1

}
.

(2) π-r(R[[X]]) =
{∑

anXn ∈ R[[X]] | a0 = ue + w with u∈U(R), e∈ Idem(R),
w ∈ nil(R);

∑
n≥1 anXn ∈ eR[[X]] + nil(R[[X]])

}
.

(3) R[X] and R[[X]] are never π-regular rings.

Proof. (1) By Corollary 4.3(1) and Theorem 3.2(1), π-r(R[X]) = vnr(R[X]) +
nil(R[X]) =

{∑
anXn +

∑
wnXn ∈ R[X] | a0 = ue, an ∈ e(nil(R)) for every n ≥ 1,

wn ∈ nil(R) for every n ≥ 0 for some u ∈ U(R) and e ∈ Idem(R)
}

=
{∑

anXn ∈
R[X] | a0 = ue + w for some u ∈ U(R), e ∈ Idem(R), w ∈ nil(R); an ∈ nil(R) for
every n ≥ 1

}
=

{∑
anXn ∈ R[X] | a0 ∈ π-r(R), an ∈ nil(R) for every n ≥ 1

}
.

(2) This follows from Corollary 4.3(1) and Theorem 3.2(2).
(3) This follows since X is not a π-regular element in either ring. An alternate

proof would be to note that R[X] and R[[X]] each have Krull dimension at least
one. ¤

Theorem 4.7. Let R be a commutative ring and M an R-module.
(1) π-r(R(+)M) = {(r,m) | r ∈ π-r(R), m ∈ M} = π-r(R)(+)M .
(2) R(+)M is a π-regular ring if and only if R is a π-regular ring.

Proof. (1) By Corollary 4.3(1), Theorem 3.7(1), and Lemma 3.6(2), π-r(R(+)M) =
vnr(R(+)M) + nil(R(+)M) = {(r, rm) + (w, n) | r ∈ vnr(R), w ∈ nil(R), m,n ∈
M} = {(r,m) | r ∈ π-r(R), m ∈ M} = π-r(R)(+)M .

(2) This follows directly from (1). ¤

Recall that nil(R) is of bounded index n if n is the least positive integer such
that wn = 0 for every w ∈ nil(R). A commutative ring R is said to be of bounded
index n if n is the least positive integer such that an ∈ vnr(R) for every a ∈ π-r(R)
(cf. [24, page 332]). Note that a von Neumann regular ring is of bounded index 1.

Theorem 4.8. Let R be a commutative ring and n a positive integer. Then R is
of bounded index n if and only if nil(R) is of bounded index n.

Proof. Suppose that R is of bounded index n, and let w ∈ nil(R) ⊆ π-r(R). Then
wn ∈ vnr(R) ∩ nil(R) = {0} by Theorem 2.1(3); so wn = 0. Thus nil(R) is of
bounded index at most n.
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Conversely, suppose that nil(R) is of bounded index n. Let a ∈ π-r(R); so
a = ue + w for some u ∈ U(R), e ∈ Idem(R), and w ∈ nil(R) by Theorem 4.2.
The proof of (6)⇒(3) of Theorem 4.2 gives an = ve for some v ∈ U(R), and thus
an ∈ vnr(R) by Theorem 2.2. Hence R has bounded index at most n, and thus
nil(R) and R each have bounded index n. ¤

Corollary 4.9. Let R be a commutative (resp., π-regular) ring of bounded index
n, and let M be an R-module. Then R(+)M is a commutative (resp., π-regular)
ring of bounded index at most n + 1. In particular, if R is a von Neumann regular
ring, then R(+)M is a π-regular ring of bounded index at most 2.

Proof. Note that T = R(+)M is π-regular if R is π-regular by Theorem 4.7(2)
and nil(T ) = nil(R)(+)M by Theorem 3.6(2). By Theorem 4.8, it suffices to show
that nil(T ) is of bounded index at most n + 1. Let x = (w, m) ∈ nil(T ), where
w ∈ nil(R) and m ∈ M . Since nil(R) is of bounded index n, we have xn+1 =
(w, m)n+1 = (wn+1, (n + 1)wnm) = (0, 0). Thus T is a commutative (resp., π-
regular) ring of bounded index at most n + 1. The “in particular” statement is
clear. ¤

Note that the π-regular rings R and R(+)M may both have bounded index n
even when M is nonzero. For example, let R = Z2[X]/(X2). Then R and R(+)R
are both π-regular rings and both have bounded index 2 since char(R) = 2.

Theorem 4.10. Let R be a commutative ring and I an ideal of R. Then R ./ I is
a π-regular ring if and only if R is a π-regular ring.

Proof. Since a commutative ring is π-regular if and only if it is zero-dimensional [19,
Theorem 3.1, page 10], the theorem follows from the fact that dim(R ./ I) = dim(R)
[12, Corollary 3.3]. ¤

5 Von Neumann Local Rings

Von Neumann local rings were introduced in [11] and have been further studied in
[1] and [2].

Theorem 5.1. Let R and S be commutative rings, and let {Rα}α∈Λ be a family
of commutative rings.

(1) vnl(R) = vnr(R) ∪ (1 + vnr(R)) = {0, 1} + vnr(R). In particular, {0, 1} +
U(R) = U(R) ∪ (1 + U(R)) ⊆ vnl(R).

(2) Let a ∈ R. Then a ∈ vnl(R) if and only if there are u ∈ U(R) and e ∈ Idem(R)
such that either a = ue or a = 1 + ue.

(3) nil(R) ⊆ J(R) ⊆ vnl(R). Thus U(R) ∪ J(R) ⊆ vnl(R).
(4) vnl(R) = U(R) ∪ (1 + U(R)) if and only if Idem(R) = {0, 1}. In particular,

vnl(R) = U(R)∪ (1+U(R)) when R is either an integral domain or quasilocal
(note that vnl(R) = R when R is qusailocal).

(5) If vnl(R) = vnr(R), then R is reduced, π-r(R) = vnr(R), and Z1 + vnr(R) =
vnr(R).

(6) vnl
(∏

Rα

) ⊆ ∏
vnl(Rα). If vnl

(∏
Rα

)
is multiplicatively closed, then we

have vnl
(∏

Rα

)
=

∏
vnl(Rα).



1030 D.F. Anderson, A. Badawi

(7) [1, Theorem 3.1] vnl
(∏

Rα

)
=

∏
vnl(Rα) if and only if vnl(Rα) = vnr(Rα)

for all but at most one α. In particular,
∏

Rα is a von Neumann local ring if
and only if there is at most one α such that Rα is not von Neumann regular,
and that Rα is von Neumann local.

(8) Let f : R → S be a homomorphism of commutative rings. Then f(vnl(R)) ⊆
vnl(S). In particular, vnl(R) ⊆ vnl(S) when R is a subring of S, and any
homomorphic image of a von Neumann local ring is a von Neumann local
ring.

(9) [1, Theorem 3.8] If 2 ∈ U(R), then every a ∈ vnl(R) is the sum of three units
of R.

Proof. (1) Since 1 − a ∈ vnr(R) ⇔ a − 1 ∈ vnr(R) ⇔ a ∈ 1 + vnr(R), we
have vnl(R) = vnr(R) ∪ (1 + vnr(R)). The “in particular” statement is clear since
U(R) ⊆ vnr(R).

(2) This follows from (1) and Theorem 2.2.
(3) Clearly nil(R) ⊆ J(R). Let a ∈ J(R). Then 1 − a ∈ U(R), and hence

a− 1 ∈ U(R). Thus a ∈ 1 + U(R), and hence nil(R) ⊆ J(R) ⊆ 1 + U(R) ⊆ vnl(R)
by (1). Since U(R) ⊆ vnl(R), we have U(R) ∪ J(R) ⊆ vnl(R).

(4) (⇒) Suppose that vnl(R) = U(R) ∪ (1 + U(R)). Let e ∈ Idem(R). If
e ∈ U(R), then e = 1. If e ∈ 1 + U(R), then 1− e ∈ U(R); so 1− e = 1, and hence
e = 0. Thus Idem(R) = {0, 1}.

(⇐) Suppose that Idem(R) = {0, 1}. Then vnr(R) = U(R) ∪ {0} by Theo-
rem 2.1(5). Thus vnl(R) = vnr(R) ∪ (1 + vnr(R)) = U(R) ∪ (1 + U(R)) by (1).

The “in particular” statement follows since Idem(R) = {0, 1} when R is either
an integral domain or quasilocal.

(5) Suppose that vnl(R) = vnr(R). Then nil(R) ⊆ vnl(R) = vnr(R) by (3) and
vnr(R) ∩ nil(R) = {0} by Theorem 2.1(3); so nil(R) = {0}. Thus π-r(R) = vnr(R)
by Corollary 4.3(3). Finally, if vnl(R) = vnr(R), then 1 + vnr(R) ⊆ vnr(R) by (1).
Hence n1+ vnr(R) ⊆ vnr(R) for every n ≥ 0, and thus Z1+ vnr(R) ⊆ vnr(R) since
−vnr(R) = vnr(R). Hence Z1 + vnr(R) = vnr(R).

(6) By (1) and Theorem 2.1(7), vnl
(∏

Rα

)
= vnr

(∏
Rα

)∪ (
1+vnr

(∏
Rα

))
=∏

vnr(Rα) ∪ (
1 +

∏
vnr(Rα)

)
=

∏
vnr(Rα) ∪ ∏

(1 + vnr(Rα)) ⊆ ∏
vnl(Rα) ∪∏

vnl(Rα) =
∏

vnl(Rα).
Suppose that vnl

(∏
Rα

)
is multiplicatively closed. Let (rα) ∈ ∏

α∈Λ vnl(Rα).
Let X = {α ∈ Λ | rα ∈ vnr(Rα)}; so rα = 1 + sα ∈ 1 + vnr(Rα) for α ∈ Λ\X.
Define (aα) by aα = rα for α ∈ X and aα = 1 for α ∈ Λ\X. Then (aα) ∈∏

vnr(Rα) = vnr
(∏

Rα

) ⊆ vnl
(∏

Rα

)
. Next, we define (bα) by bα = 1 for α ∈ X

and bα = rα = 1+sα for α ∈ Λ\X. Then (bα) ∈ ∏
(1+vnr(Rα)) = 1+

∏
vnr(Rα) =

1 + vnr
(∏

Rα

) ⊆ vnl
(∏

Rα

)
. Thus (rα) = (aα)(bα) ∈ vnl

(∏
Rα

)
vnl

(∏
Rα

)
⊆ vnl

(∏
Rα

)
since vnl

(∏
Rα

)
is multiplicatively closed. Hence

∏
vnl(Rα) ⊆

vnl
(∏

Rα

)
; so we have equality.

(7) (⇒) Suppose that vnr(Rβ) ( vnl(Rβ) and vnr(Rγ) ( vnl(Rγ) for distinct
β, γ ∈ Λ. Then we have aβ ∈ vnl(Rβ)\vnr(Rβ) and bγ ∈ vnl(Rγ)\vnr(Rγ). Thus
aγ = 1 − bγ ∈ vnr(Rγ) ⊆ vnl(Rγ). Let aα = 1 for all α ∈ Λ\{β, γ}. Then
(aα) ∈ ∏

α∈Λ vnl(Rα). However, (aα) 6∈ ∏
α∈Λ vnr(Rα) = vnr

(∏
α∈Λ Rα

)
since
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aβ 6∈ vnr(Rβ), and (1− aα) 6∈ ∏
α∈Λ vnr(Rα) = vnr

(∏
α∈Λ Rα

)
since 1− aγ = bγ 6∈

vnr(Rγ). Thus (aα) 6∈ vnl
(∏

α∈Λ Rα

)
; so vnl

(∏
Rα

)
(

∏
vnl(Rα).

(⇐) The “ ⊆ ” inclusion follows from (6). For the reverse inclusion, let (aα) ∈∏
vnl(Rα). If vnl(Rα) = vnr(Rα) for each α ∈ Λ, then (aα) ∈ ∏

vnr(Rα) =
vnr

(∏
Rα

) ⊆ vnl
(∏

Rα

)
. So by hypothesis, we may assume that there is only

one β ∈ Λ with vnr(Rβ) ( vnl(Rβ) and that 1 − aβ ∈ vnr(Rβ). In this case,
1− aα ∈ vnr(Rα) for all α ∈ Λ\{β} by (5); so (1− aα) ∈ ∏

vnr(Rα) = vnr
(∏

Rα

)
.

Thus (aα) ∈ vnl
(∏

Rα

)
, and hence

∏
vnl(Rα) ⊆ vnl

(∏
Rα

)
.

The “in particular” statement is clear.
(8) Since f is a homomorphism, f(vnl(R)) = f(vnr(R) ∪ (1 + vnr(R))) ⊆

f(vnr(R)) ∪ f(1 + vnr(R)) ⊆ vnr(S) ∪ (1 + vnr(S)) = vnl(S) by (1) and Theo-
rem 2.1(8). The “in particular” statement is clear.

(9) This follows directly from Theorem 2.10 and (1). ¤

It follows from Theorem 5.1(7) that the inclusion vnl
(∏

Rα

) ⊆ ∏
vnl(Rα) in

Theorem 5.1(6) may be proper. For example, Z4 is a von Neumann local ring, but
Z4 × Z4 is not von Neumann local (see Section 3 of [1]). Also, unlike Idem(R),
vnr(R), and π-r(R), the set vnl(R) need not be multiplicatively closed since vnl(Z)
= U(Z) ∪ (1 + U(Z)) = {−1, 0, 1, 2} by Theorem 5.1(4) (cf. Theorems 5.1(6) and
6.1(8)).

We next determine the von Neumann local elements in R[X], R[[X]], and
R(+)M . Several other equivalent conditions for R[[X]] to be a von Neumann local
ring are given in [1, Theorem 4.6].

Theorem 5.2. Let R be a commutative ring.

(1) vnl(R[X]) =
{∑

anXn ∈ R[X] | either a0 = ue or a0 = 1 − ue, and an ∈
e(nil(R)) for every n ≥ 1 for some u ∈ U(R) and e ∈ Idem(R)

}
.

(2) [1, Corollary 4.8] R[X] is never a von Neumann local ring.

(3) vnl(R[[X]]) =
{∑

anXn ∈ R[[X]] | either a0 = ue or a0 = 1 − ue, and

an ∈ eR for every n ≥ 1 for some u ∈ U(R) and e ∈ Idem(R)
}
.

(4) [1, Theorem 4.6] R[[X]] is a von Neumann local ring if and only if R is a
quasilocal ring.

Proof. (1) This follows from Theorems 3.2(1) and 5.1(2).
(2) It follows from (1) that X 6∈ vnl(R[X]); so R[X] is never von Neumann local.
(3) This follows from Theorems 3.2(2) and 5.1(2).
(4) If R is quasilocal, then R[[X]] is also quasilocal, and hence R[[X]] is von

Neumann local. Conversely, suppose that R is not quasilocal. Then 1 = a + b
for nonzero nonunits a, b ∈ R. Thus neither f = a + X nor 1 − f = b − X is in
vnr(R[[X]]) by Theorem 3.2(2), and hence f 6∈ vnl(R[[X]]); so R[[X]] is not a von
Neumann local ring. ¤

For the next theorem, observe that if Idem(R) = {0, 1}, then vnl(R) = cln(R)
(cf. Theorem 6.1(4), its proof is independent of earlier results). Thus if Idem(R) =
{0, 1}, then R is a von Neumann local ring if and only R is a clean ring.

Theorem 5.3. Let R be a commutative ring and M an R-module.
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(1) vnl(R(+)M) = {(r, rm) | r ∈ vnr(R), m ∈ M} ∪ {(1 + r, rm) | r ∈ vnr(R),
m ∈ M}.

(2) R is a von Neumann local ring when R(+)M is a von Neumann local ring.

(3) Suppose that there is m ∈ M with annR(m) = {0}. Then R(+)M is a
von Neumann local ring if and only if R is a von Neumann local ring with
Idem(R) = {0, 1}.

(4) If M is a ring extension of R, then R(+)M is a von Neumann local ring if
and only if R is a von Neumann local ring with Idem(R) = {0, 1}.

Proof. (1) Since the identity element of R(+)M is (1, 0), we have vnl(R(+)M) =
vnr(R(+)M)∪((1, 0)+vnr(R(+)M)) = {(r, rm) | r ∈ vnr(R), m ∈ M}∪{(1+r, rm) |
r ∈ vnr(R), m ∈ M} by Theorems 5.1(1) and 3.7.

(2) This follows from Theorem 5.1(8) and Lemma 3.6(5).
(3) Suppose that R is a von Neumann local ring with Idem(R) = {0, 1}. Then R

is a clean ring by Theorem 6.1(4). Thus R(+)M is a clean ring with Idem(R(+)M)
= {0, 1} by Theorem 6.1(4) and Lemma 3.6(4), and hence R(+)M is also a von
Neumann local ring by Theorem 6.1(4) again.

Conversely, suppose that R(+)M is a von Neumann local ring and m ∈ M with
annR(m) = {0}. Then R is a von Neumann local ring by (2). Suppose that there
is e ∈ Idem(R)\{0, 1}. Since (e,m) ∈ vnl(R(+)M), either (e,m) = (f1, 0)(u, t) for
some f1 ∈ Idem(R)\{0, 1}, u ∈ U(R), and t ∈ M , or (e,m) = (1, 0) + (f2, 0)(v, k)
for some f2 ∈ Idem(R)\{0, 1}, v ∈ U(R), and k ∈ M by Theorem 5.1(2) and
Lemma 3.6 (note that f2 6∈ {0, 1} since 1 + v 6∈ Idem(R)). In the first case, we have
(1 − f1)m = 0, and in the second case, we have (1 − f2)m = 0, which are both
contradictions since annR(m) = {0}. Thus Idem(R) = {0, 1}.

(4) Suppose that M is a ring extension of R. Since 1 ∈ M and annR(1) = {0},
the claim follows from (3). ¤

The next example shows that the hypothesis Idem(R) = {0, 1} is needed in (3)
and (4) of the above theorem.

Example 5.4. (a) Let R = Z2 × Z2, M = R, and T = R(+)M . Then T is a clean
ring by Theorem 6.1(4) since R is von Neumann regular, and thus clean. However,
T is not a von Neumann local ring by Theorem 5.3(4) since {0, 1} ( Idem(R).

(b) Let R = Z2 × Z2, M = Z2 × {0}, and T = R(+)M . Then R is a von
Neumann regular ring, and thus a von Neumann local ring and a clean ring, but T
is not a von Neumann local ring by Theorem 5.3(1).

6 Clean Elements

We first collect some elementary results about clean elements. In particular, we
show that vnl(R) ⊆ cln(R) (cf. [4, page 3331]) and π-r(R) ⊆ cln(R).

Theorem 6.1. Let R and S be commutative rings, and let {Rα} be a family of
commutative rings.

(1) Idem(R) ⊆ vnr(R) ⊆ vnl(R) ⊆ cln(R). In particular, a Boolean ring, a von
Neumann regular ring, or a von Neumann local ring is a clean ring.

(2) vnr(R) ⊆ π-r(R) ⊆ cln(R). In particular, a π-regular ring is a clean ring.
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(3) U(R) ∪ J(R) ⊆ U(R) ∪ (1 + U(R)) ⊆ cln(R).
(4) If Idem(R) = {0, 1}, then cln(R) = vnl(R). In particular, cln(R) = vnl(R)

when R is either an integral domain or quasilocal (note that cln(R) = vnl(R)
= R when R is quasilocal).

(5) [18, Proposition 7] cln
(∏

Rα

)
=

∏
cln(Rα). In particular,

∏
Rα is a clean

ring if and only if each Rα is a clean ring.

(6) Let f : R → S be a homomorphism of commutative rings. Then f(cln(R)) ⊆
cln(S). In particular, cln(R) ⊆ cln(S) when R is a subring of S, and any
homomorphic image of a clean ring is a clean ring.

(7) If 2 ∈ U(R), then every a ∈ cln(R) is the sum of three units of R.

(8) If vnl(R) is multiplicatively closed, then cln(R) = vnl(R).

Proof. (1) We first show that vnr(R) ⊆ cln(R). Let a ∈ vnr(R). Then a = ue for
some u ∈ U(R) and e ∈ Idem(R) by Theorem 2.2. Thus a = (ue + e− 1) + (1− e)
with ue + e− 1 ∈ U(R) since (ue + e− 1)(u−1e + e− 1) = 1 and 1− e ∈ Idem(R);
so a ∈ cln(R). We next show that 1+vnr(R) ⊆ cln(R). Let a = ue as above. Then
1+a = 1+ue = (ue+1−e)+e with ue+1−e ∈ U(R) since (ue+1−e)(u−1e+1−e)
= 1 and e ∈ Idem(R); so 1+vnr(R) ⊆ cln(R). Hence vnl(R) = vnr(R)∪(1+vnr(R))
⊆ cln(R). The “in particular” statement is clear.

(2) Let x ∈ π-r(R). Then x = a + w for some a ∈ vnr(R) and w ∈ nil(R)
by Theorem 4.2. Since vnr(R) ⊆ vnl(R) ⊆ cln(R) by (1), we have a = u + e for
some u ∈ U(R) and e ∈ Idem(R). Thus x = a + w = u + e + w = (u + w) + e ∈
U(R) + Idem(R) = cln(R). The “in particular” statement is clear.

(3) This follows from (1) and Theorem 5.1(1)(3).
(4) Suppose that Idem(R) = {0, 1}. Then cln(R) = {0, 1} + U(R) = U(R) ∪

(1 + U(R)) ⊆ vnl(R); so cln(R) = vnl(R). The “in particular” statement is clear
since Idem(R) = {0, 1} when R is either an integral domain or quasilocal.

(5) This is clear.
(6) Since f(Idem(R)) ⊆ Idem(S), f(U(R)) ⊆ U(S), and f is a homomorphism,

we have f(cln(R)) = f(U(R) + Idem(R)) = f(U(R)) + f(Idem(R)) ⊆ U(S) +
Idem(S) = cln(S). The “in particular” statement is clear.

(7) This follows from Theorem 2.10 since Idem(R) ⊆ vnr(R).
(8) By (1), we always have vnl(R) ⊆ cln(R). Now suppose that vnl(R) is mul-

tiplicatively closed. Let x = e + u ∈ cln(R) with e ∈ Idem(R) and u ∈ U(R). Then
x = e + u = u(u−1e + 1) ∈ vnl(R) since u ∈ U(R) ⊆ vnl(R) by Theorem 5.1(3),
u−1e + 1 ∈ 1 + vnr(R) ⊆ vnl(R) by Theorems 2.2 and 5.1(1), and vnl(R) is multi-
plicatively closed. Thus cln(R) = vnl(R). ¤

Like vnl(R), the set cln(R) need not be multiplicatively closed since cln(Z) =
vnl(Z) = {−1, 0, 1, 2} by Theorem 6.1(4) (this example also shows that the converse
of Theorem 6.1(8) does not hold). However, parts (1), (5), and (8) of Theorem 6.1
may be used to give another proof of the “if, then” statement in Theorem 5.1(6).
Also, the converse of Theorem 6.1(4) is false since cln(R) = vnl(R) = Idem(R) = R
for any Boolean ring R. The next example shows that the inclusions between
Idem(R), vnr(R), π-r(R), vnl(R), and cln(R) in Theorem 6.1(1)(2) may all be
strict.
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Example 6.2. Let R = Z×Z4×Z4. Then Idem(R) = {0, 1}×{0, 1}×{0, 1}, vnr(R) =
{−1, 0, 1}×{0, 1, 3}×{0, 1, 3} by Theorem 2.1(7), and π-r(R) = {−1, 0, 1}×Z4×Z4

by Theorem 4.1(7). Also, vnl(R) = vnr(R) ∪ (1 + vnr(R)) by Theorem 5.1(1), and
cln(R) = {−1, 0, 1, 2} × Z4 × Z4 by Theorem 6.1(5). Thus Idem(R) ( vnr(R) (
π-r(R) ( cln(R) ( R and vnr(R) ( vnl(R) ( cln(R). Note that π-r(R) and vnl(R)
are not comparable since (1, 2, 3) ∈ π-r(R)\vnl(R) and (2, 0, 1) ∈ vnl(R)\π-r(R).

We next determine the clean elements in R[X], R[[X]], and R(+)M .

Theorem 6.3. Let R be a commutative ring.

(1) cln(R[X]) =
{∑

anXn ∈ R[X] | a0 ∈ cln(R), an ∈ nil(R) for every n ≥ 1
}
.

(2) [18, Example 2] R[X] is never a clean ring.

(3) cln(R[[X]]) =
{∑

anXn ∈ R[[X]] | a0 ∈ cln(R)
}
.

(4) [18, Proposition 6] R[[X]] is a clean ring if and only if R is a clean ring.

Proof. (1) We have cln(R[X]) = U(R[X])+Idem(R[X]) =
{∑

anXn ∈ R[X] | a0 =
u + e for some u ∈ U(R) and e ∈ Idem(R); an ∈ nil(R) for every n ≥ 1

}
={∑

anXn ∈ R[X] | a0 ∈ cln(R), an ∈ nil(R) for every n ≥ 1
}

since U(R[X]) ={∑
anXn ∈ R[X] | a0 ∈ U(R), an ∈ nil(R)

}
and Idem(R[X]) = Idem(R) by

Lemma 3.1.
(2) It follows directly from (1) that X 6∈ cln(R[X]); so R[X] is never a clean ring.
(3) It follows by definition since U(R[[X]]) =

{∑
anXn ∈ R[[X]] | a0 ∈ U(R)

}
and Idem(R[[X]]) = Idem(R) by Lemma 3.1.

(4) This follows directly from (3). ¤

Theorem 6.4. Let R be a commutative ring and M an R-module.

(1) cln(R(+)M) = {(r,m) | r ∈ cln(R), m ∈ M} = cln(R)(+)M .
(2) [3, Theorem 1.10] R(+)M is a clean ring if and only if R is a clean ring.

Proof. (1) By Lemma 3.6, cln(R(+)M) = U(R(+)M)+Idem(R(+)M) = {(u,m)+
(e, 0) |u ∈ U(R), e ∈ Idem(R), m ∈ M} = {(u+e,m) |u ∈ U(R), e ∈ Idem(R), m ∈
M} = {(r,m) | r ∈ cln(R), m ∈ M} = cln(R)(+)M .

(2) This follows directly from (1). ¤

Does Theorem 2.5 (or Theorem 4.5) generalize to the von Neumann local ele-
ments or clean elements of R? That is, does {0} 6= Z(R) ⊆ vnl(R) (resp., {0} 6=
Z(R) ⊆ cln(R)) imply that R is a von Neumann local (resp., clean) ring? The next
example shows that it does not.

Example 6.5. Let A = Z[[X]],M = Z[[X]][1/X]/Z[[X]] an A-module, and R =
A(+)M . Then {0} 6= nil(R) = {0}(+)M ( Z(R) = XA(+)M ⊆ cln(R) by
Lemma 3.6(2)(3), Theorems 6.4(1) and 6.1(3), and cln(R) = vnl(R) by Theo-
rem 6.1(4) and Lemma 3.6(4). However, R is not a clean ring, and thus not a
von Neumann local ring by Theorem 6.4(2) since A is not a clean ring by Theo-
rem 6.3(4).

We have π-r(R) = U(R) ∪ nil(R) if and only if Idem(R) = {0, 1} by Theo-
rem 4.1(5), and π-r(R) = vnr(R) ∪ nil(R) if and only if either Idem(R) = {0, 1} or
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nil(R) = {0} by Theorem 4.4(1). We next consider to what extent these two results
extend to vnl(R) and cln(R).

Theorem 6.6. Let R be a commutative ring, and consider the following statements:

(a) vnl(R) = U(R) ∪ nil(R).
(b) cln(R) = U(R) ∪ nil(R).
(c) vnl(R) = vnr(R) ∪ nil(R).
(d) cln(R) = vnr(R) ∪ nil(R).

Then

(1) (a)⇔(b), (c)⇔(d), and (a)⇒(c).
(2) If any of the four statements holds, then π-r(R) = vnl(R) = cln(R).
(3) If (a) or (b) holds, then Idem(R) = {0, 1}.
(4) If (c) or (d) holds, then either Idem(R) = {0, 1} or nil(R) = {0}.

Proof. (1) Clearly (a)⇒(c) since U(R) ⊆ vnr(R) ⊆ vnl(R) by Theorem 6.1(1). We
show (a)⇔(b); the proof for (c)⇔(d) is similar, and hence is omitted.

(a)⇒(b) Suppose that vnl(R) = U(R) ∪ nil(R). Then vnl(R) is multiplicatively
closed; so cln(R) = vnl(R) by Theorem 6.1(8). Thus (b) holds.

(b)⇒(a) Suppose that cln(R) = U(R)∪nil(R). Since U(R)∪nil(R) ⊆ vnl(R) ⊆
cln(R) by Theorems 5.1(3) and 6.1(1), we have vnl(R) = cln(R). Thus (a) holds.

(2) Suppose that one of the four statements holds. Then vnl(R) = cln(R) by
(1), and U(R) ∪ nil(R) ⊆ vnr(R) ∪ nil(R) ⊆ π-r(R) ⊆ cln(R) by Theorems 4.1(4)
and 6.1(2). Thus π-r(R) = vnl(R) = cln(R).

(3) Suppose that either (a) or (b) holds. Then π-r(R) = U(R) ∪ nil(R) by (2);
so Idem(R) = {0, 1} by Theorem 4.1(5).

(4) Suppose that either (c) or (d) holds. Then π-r(R) = vnr(R)∪ nil(R) by (2);
so either Idem(R) = {0, 1} or nil(R) = {0} by Theorem 4.4(1). ¤

Let R = Z2 ×Z2. Then R is a Boolean ring; so R = vnr(R) = vnl(R) = cln(R).
However, U(R) ∪ nil(R) ( R. Thus (c) does not imply (a) in the above theorem.
Also, letting R = Z shows that the converses of (3) and (4) both fail.

Theorems 2.4(2) and 4.4(2) do not extend to vnl(R) and cln(R). For example,
the quasilocal domain R = Z(2) is both a von Neumann local ring and a clean
ring, but it is not a total quotient ring. However, if T (R) = R, then certainly
R = vnl(R) ∪ Z(R) = cln(R) ∪ Z(R).

7 Zero-divisor Graphs

As in [10], the zero-divisor graph of a commutative ring R, denoted by Γ(R), is the
undirected graph with vertices Z(R)∗ and two distinct vertices x and y are adjacent
if and only if xy = 0 (see [6] for a recent survey article on zero-divisor graphs). In this
final section, we consider five induced subgraphs Γ(Idem(R)), Γ(vnr(R)), Γ(π-r(R)),
Γ(vnl(R)), and Γ(cln(R)) of Γ(R) with vertices Idem(R)∩Z(R)∗, vnr(R)∩Z(R)∗,
π-r(R)∩Z(R)∗, vnl(R)∩Z(R)∗, and cln(R)∩Z(R)∗, respectively. For Z(R)∗ 6= ∅,
we have Γ(Idem(R)) = Γ(R) (resp., Γ(vnr(R)) = Γ(R)) if and only if R is a Boolean
(resp., von Neumann regular) ring by Theorem 2.7 (resp., Theorem 2.5), and for
nil(R) ( Z(R), we have Γ(π-r(R)) = Γ(R) if and only if R is a π-regular ring
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by Theorem 4.5. Clearly Γ(R) is the empty graph if and only if R is an integral
domain. However, the above subgraphs may be empty when R is not an integral
domain. For example, Γ(Idem(R)) is the empty graph if and only if Idem(R) =
{0, 1}, and Γ(π-r(R)) is the empty graph when R is a quasilocal reduced ring by
Theorem 2.1(5) and Corollary 4.3(3). Also, note that Idem(R) ∩ Z(R)∗ 6= ∅ if and
only if vnr(R) ∩ Z(R)∗ 6= ∅ by Theorem 2.1(2).

We have Γ(Idem(R)) ⊆ Γ(vnr(R)) ⊆ Γ(π-r(R)) ⊆ Γ(cln(R)) ⊆ Γ(R) and
Γ(vnr(R)) ⊆ Γ(vnl(R)) ⊆ Γ(cln(R)) for any commutative ring R. Since a zero-
dimensional (e.g., finite) ring is π-regular, Γ(π-r(R)) = Γ(vnl(R)) = Γ(cln(R)) =
Γ(R) when R is zero-dimensional. However, for T = Z × Z4 × Z4 as in Exam-
ple 6.2, we have Γ(Idem(T )) ( Γ(vnr(T )) ( Γ(π-r(T )) ( Γ(cln(T )) ( Γ(T ),
Γ(vnr(T )) ( Γ(vnl(T )) ( Γ(cln(T )), and Γ(π-r(T )) and Γ(cln(T )) are not com-
parable. Moreover, Γ(T ) is infinite, while the other five subgraphs are all finite.

We next recall some concepts from graph theory (for any undefined notation or
terminology in graph theory, see [14]). Let G be an (undirected) graph. We say
that G is connected if there is a path between any two distinct vertices of G. For
distinct vertices x and y of G, the distance between x and y, denoted by d(x, y), is
the length of a shortest path connecting x and y (d(x, x) = 0 and d(x, y) = ∞ if no
such path exists). The diameter of G is diam(G) = sup{d(x, y) |x, y are vertices of
G}. We define the girth of G, denoted by gr(G), as the length of a shortest cycle
in G, provided G contains a cycle; otherwise gr(G) = ∞. It is well known that
Γ(R) is connected with diam(Γ(R)) ≤ 3 and that gr(Γ(R)) ≤ 4 if Γ(R) contains a
cycle (for instance, see [6, Theorems 2.2 and 2.3]). Thus diam(Γ(R)) ∈ {0, 1, 2, 3}
and gr(Γ(R)) ∈ {3, 4,∞}. We next show that these two results also hold for the
subgraphs Γ(Idem(R)), Γ(vnr(R)), and Γ(π-r(R)) of Γ(R). However, the subgraphs
Γ(vnl(R)) and Γ(cln(R)) need not be connected (see Example 7.7).

Lemma 7.1. Let R be a commutative ring and x ∈ R.
(1) If x ∈ vnr(R) ∩ Z(R)∗, then there is y ∈ vnr(R) ∩ Z(R)∗\{x} with xy = 0.
(2) If x ∈ π-r(R) ∩ Z(R)∗, then there is y ∈ π-r(R) ∩ Z(R)∗ with xy = 0.

Proof. (1) Let x2z = x for z ∈ R. Then xz ∈ Idem(R)\{0, 1}, and thus y = 1−xz ∈
Idem(R)\{0, 1}. Hence y ∈ vnr(R)∩Z(R)∗ and xy = x(1− xz) = x− x2z = 0. We
have y 6= x since x is not nilpotent by Theorem 2.1(3).

(2) This is clear if x ∈ nil(R); so we may assume that x is not nilpotent. Then
xn ∈ vnr(R) ∩ Z(R)∗ for some n ≥ 1 by Theorem 4.2. Thus xnz = 0 for some
z ∈ vnr(R) ∩ Z(R)∗ by (1). We may assume that xn−1z 6= 0; hence y = xn−1z ∈
π-r(R) ∩ Z(R)∗ by Theorem 4.1(3) and xy = x(xn−1z) = xnz = 0. ¤

Theorem 7.2. Let R be a commutative ring.
(1) Γ(vnr(R)) is connected with diam(Γ(vnr(R))) ≤ 3.
(2) gr(Γ(vnr(R))) ≤ 4 if Γ(vnr(R)) contains a cycle.

Proof. (1) Let x, y be distinct elements in vnr(R) ∩ Z(R)∗ with xy 6= 0. By
Lemma 7.1, there are a, b ∈ vnr(R) ∩Z(R)∗ such that xa = yb = 0. If ab 6= 0, then
ab ∈ vnr(R) ∩ Z(R)∗ by Theorem 2.1(2), and thus x− ab− y is a path of length 2
from x to y in Γ(vnr(R)). If ab = 0, then x− a− b− y is a path of length at most 3
from x to y in Γ(vnr(R)). Hence Γ(vnr(R)) is connected and diam(Γ(vnr(R))) ≤ 3.
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(2) Let a − b − c1 − · · · − cn − a be a cycle in Γ(vnr(R)). If c1cn = 0, then
a − b − c1 − cn − a is a cycle of length 4 in vnr(R). Suppose that c1cn 6= 0.
Then a 6= c1cn and b 6= c1cn since a(c1cn) = b(c1cn) = 0 and a, b 6∈ nil(R) by
Theorem 2.1(3). Since c1cn ∈ vnr(R) ∩ Z(R)∗ by Theorem 2.1(2), a− b− c1cn − a
is a cycle of length 3 in Γ(vnr(R)). Thus gr(Γ(vnr(R))) ≤ 4. ¤

Theorem 7.3. Let R be a commutative ring.

(1) Γ(Idem(R)) is connected with diam(Γ(Idem(R))) ≤ 3.

(2) gr(Γ(Idem(R))) ≤ 4 if Γ(Idem(R)) contains a cycle.

Proof. (1) The proof is similar to that of Theorem 7.2(1). For x = e and y = f
with e, f ∈ Idem(R) ∩ Z(R)∗, let a = 1− e and b = 1− f .

(2) The proof is similar to that of Theorem 7.2(2) since Idem(R) ∩ Z(R) is
multiplicatively closed and contains no nonzero nilpotent elements. ¤

Theorem 7.4. Let R be a commutative ring.

(1) Γ(π-r(R)) is connected with diam(Γ(π-r(R))) ≤ 3.

(2) gr(Γ(π-r(R))) ≤ 4 if Γ(π-r(R)) contains a cycle.

Proof. (1) The proof is similar to that of Theorem 7.2(1) using Lemma 7.1(2).
(2) This follows from the same proof for the girth of Γ(R) as given in [6, The-

orem 3]. Note that the simpler proof for Γ(vnr(R)) given in Theorem 7.2(2) may
fail for Γ(π-r(R)) since π-r(R) may contain nonzero nilpotent elements. ¤

We next give an additional hypothesis on R which guarantees that Γ(vnr(R)),
and hence Γ(π-r(R)), Γ(vnl(R)), and Γ(cln(R)), all contain a 4-cycle. Note that
the hypothesis that 2 6∈ Z(R) is crucial. Let R = Z2 × Z4; then {0, 1} ( Idem(R),
but Γ(R) contains no cycles.

Theorem 7.5. Let R be a commutative ring with 2 6∈ Z(R) and {0, 1} ( Idem(R).
Then Γ(R) contains a 4-cycle with each vertex in vnr(R). In particular, Γ(vnr(R)),
Γ(π-r(R)), Γ(vnl(R)), and Γ(cln(R)) all have girth at most 4.

Proof. Let e ∈ Idem(R)\{0, 1}. Then e, 1− e ∈ vnr(R) ∩ Z(R)∗. Since 2 6∈ Z(R),
e, −e, 1 − e, and −(1 − e) = e − 1 are distinct elements in vnr(R) ∩ Z(R)∗. Thus
e− (1− e)− (−e)− (e− 1)− e is the desired 4-cycle. The “in particular” statement
is clear. ¤

Remark 7.6. More generally, suppose that x, y ∈ Z(R)∗ are distinct with xy = 0
and y 6∈ nil(R). If 2 6∈ Z(R), then x − y − (−x) − (−y) − x is a cycle of length 4
in Γ(R). Theorem 7.5 is then the special case with x = e and y = 1 − e for
e ∈ Idem(R)\{0, 1}.

The next example shows that Γ(vnl(R)) and Γ(cln(R)) need not be connected.

Example 7.7. Let A = Z[[X]], I = 3XA, and R = A/I = Z[[X]]/3XZ[[X]]. Then
cln(R) = vnl(R) by Theorem 6.1(4) since Idem(R) = {0, 1}. We will show that
Γ(vnl(R)) = Γ(cln(R)) is not connected. Let a = 2X + I, b = 4X + I ∈ R. Then
a, b ∈ vnl(R)∩Z(R)∗ by Theorem 5.1(3)(8). However, there is no c ∈ cln(R)∩Z(R)∗
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adjacent to either a or b since annR(a) = annR(b) = 3R. In fact, Γ(R) is the com-
plete bipartite graph on the two disjoint sets C = {Xf + I | f ∈ A, 3 - f} =
(XR)∗ and D = {3f + I | f ∈ A, X - f} = (3R)∗, and C = vnl(R) ∩ Z(R)∗ =
cln(R) ∩ Z(R)∗; so Γ(vnl(R)) = Γ(cln(R)) is totally disconnected. Thus Theo-
rem 7.2(1) does not extend to Γ(vnl(R)) and Γ(cln(R)).

We next give a condition which ensures that Γ(vnl(R)) and Γ(cln(R)) are each
connected with diameter at most 3. In the next theorem, for S ⊆ R, we let Γ(S)
be the induced subgraph of Γ(R) with S ∩ Z(R)∗ its set of vertices (this notation
agrees with our earlier notation for Γ(Idem(R)), . . . ,Γ(cln(R))).

Theorem 7.8. Let R be a commutative ring and S ⊆ R such that nil(R) is a
prime ideal of R and nil(R)∗ ⊆ S. Then Γ(S) is connected with diam(Γ(S)) ≤ 3,
and gr(Γ(S)) ≤ 4 if Γ(S) contains a cycle.

Proof. Let a, b ∈ S ∩ Z(R)∗ with ab 6= 0. Suppose that a ∈ nil(R). Then by the
proof of [8, Lemma 2.3], there is w ∈ nil(R)∗ such that a− w − b is a path from a
to b in Γ(S). Now suppose that a, b 6∈ nil(R). Since nil(R) is a prime ideal of R and
a, b ∈ Z(R)∗, there are c, d ∈ nil(R)∗ such that ac = bd = 0. If c = d, then a− c− b
is a path from a to b in Γ(S). If cd 6= 0, then a − cd − b is a path from a to b in
Γ(S). Finally, if cd = 0 and c 6= d, then a − c − d − b is the desired path in Γ(S).
Thus diam(Γ(S)) ≤ 3.

Suppose that c1 − c2 − · · · − cn − c1 is a cycle in Γ(S) with each ci ∈ nil(R)∗.
Since c2, cn ∈ nil(R)∗, by the proof of [8, Lemma 2.1], there is w ∈ nil(R)∗ such that
c2−w−cn is a path in Γ(S). Thus c1−c2−w−cn−c1 is a cycle of length 4 in Γ(S).
Now suppose that some ci is not nilpotent; say c1 6∈ nil(R). Since nil(R) is a prime
ideal of R, we have c2, cn ∈ nil(R)∗. Again, by the proof of [8, Lemma 2.1], there is
h ∈ nil(R)∗ such that c2 − h− cn is a path in Γ(S). But then c1 − c2 − h− cn − c1

is a cycle of length 4 in Γ(S). Hence gr(Γ(S)) ≤ 4. ¤

Corollary 7.9. Let R be a commutative ring such that nil(R) is a prime ideal
of R.

(1) Γ(vnl(R)) is connected with diam(Γ(vnl(R))) ≤ 3, and gr(Γ(vnl(R))) ≤ 4 if
Γ(vnl(R)) contains a cycle.

(2) Γ(cln(R)) is connected with diam(Γ(cln(R))) ≤ 3, and gr(Γ(cln(R))) ≤ 4 if
Γ(cln(R)) contains a cycle.

Proof. Since nil(R) ⊆ vnl(R) ⊆ cln(R) by Theorems 5.1(3) and 6.1(1), the corollary
follows directly from the above theorem using S = vnl(R) in (1) and S = cln(R)
in (2). ¤

The zero-divisor graphs of von Neumann regular rings and Boolean rings have
been studied in [26], [9], [21], [22] and [23]. We next show that some of the results
from [9] carry over to Γ(Idem(R)) and Γ(vnr(R)), but first we recall some definitions.
Distinct vertices a and b of a graph G are orthogonal, written a ⊥ b, if a and b are
adjacent and there is no vertex c of G which is adjacent to both a and b, i.e., the
edge a−b is not part of any triangle in G. We say that G is complemented if for each
vertex a of G, there is a vertex b of G (called a complement of a) such that a ⊥ b; and
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G is uniquely complemented if G is complemented and whenever a ⊥ b and a ⊥ c in
G, then b and c are adjacent to exactly the same vertices in G. Then Γ(R) is uniquely
complemented if and only if either T (R) is von Neumann regular or Γ(R) is a star
graph [9, Corollary 3.10]. In particular, Γ(R) is uniquely complemented when R is
von Neumann regular. We next generalize this to Γ(Idem(R)) and Γ(vnr(R)). This
result does not extend to Γ(π-r(R)), Γ(vnl(R)), and Γ(cln(R)) since Γ(π-r(R)) =
Γ(R) for any zero-dimensional (e.g., finite) commutative ring R, and Γ(F4[X]/(X2))
is a triangle, and thus is not complemented.

Theorem 7.10. Let R be a commutative ring. Then Γ(Idem(R)) and Γ(vnr(R))
are uniquely complemented.

Proof. We first show that Γ(vnr(R)) is complemented. Let a ∈ vnr(R) ∩ Z(R)∗.
Then a = ue for some u ∈ U(R) and e ∈ Idem(R)\{0, 1} by Theorem 2.2, and
thus b = u(1 − e) ∈ vnr(R) ∩ Z(R)∗. Then b 6= a, ab = 0, and a + b = u ∈ U(R).
Suppose that c ∈ vnr(R) ∩ Z(R)∗ is adjacent to both a and b in Γ(vnr(R)). Then
ac = bc = 0, hence uc = (a + b)c = ab + ac = 0, and thus c = 0, a contradiction.
Hence a ⊥ b in Γ(vnr(R)) (this also follows from [9, Lemma 3.3]). We next show
that Γ(vnr(R)) is uniquely complemented. So suppose that a ⊥ b and a ⊥ c in
Γ(vnr(R)). It is sufficient to show that if d ∈ vnr(R)∩Z(R)∗\{a, b, c} with db = 0,
then dc = 0. Suppose that dc 6= 0. Then (dc)a = d(ca) = 0, (dc)b = c(db) = 0,
and dc ∈ vnr(R) ∩ Z(R)∗\{a, b} since vnr(R) is multiplicatively closed and a, b 6∈
nil(R). But this contradicts that a ⊥ b in Γ(vnr(R)); so Γ(vnr(R)) is uniquely
complemented.

The proof for Γ(Idem(R)) is similar, but somewhat simpler, to that for Γ(vnr(R))
with a = e and b = 1− e for e ∈ Idem(R) ∩ Z(R)∗. ¤

Acknowledgement. We would like to thank the referee for some helpful comments.
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